Shape Optimization of Cochlear Implant Electrode Array using Genetic Algorithms

نویسنده

  • Charles T.M. Choi
چکیده

−Finite element analysis is used to compute the current distribution of the human cochlea during cochlear implant electrical stimulation. Genetic algorithms are then applied in conjunction with the finite element analysis to optimize the shape of cochlear implant electrode array based on the energy deposited in the spiral ganglion cells region. The goal is to improve the focus of electrical energy delivered to the spiral ganglion cells in the human cochlea, thus, reducing energy wasted and improve the efficiency and effectiveness of the cochlear implant system. Index Terms−F i n i t e e l e m e n t m e t h o d , genetic algorithm, cochlear implant, electrode array.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Cochlear Size in Insertion of Electrode Depth in Patients with Cochlear Implantation evaluated by CT-Scan

Background Cochlear implant surgery is an invasive procedure for patients with bilateral Sensorineural hearing loss and may cause some risks such as cochlear damage. We aimed to evaluate the effectiveness of cochlear measures obtained by computed tomography (CT) scan in predicting depth of cochlear implant insertion. Materials and Methods This study was conducted in a retrospective and cross-se...

متن کامل

Finite element modeling of final placement and insertion depth of new cochlear implant electrode array embedded with nitinol shape memory alloy actuators

A new electrode array embedded with nitinol shape memory alloy actuator has been designed so that it can be located beneath the basilar membrane inside the cochlear scala tympani to effectively deliver neurotrophins (growth factors) into the cochlea. The electrode array is also expected to be inserted deeper into the cochlear middle turn to stimulate further auditory neurons compared to the Nuc...

متن کامل

Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy

In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode arr...

متن کامل

Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array

Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, t...

متن کامل

Optimization of Array Factor in Linear Arrays Using Modified Genetic Algorithm

The array factor (sidelobe level, SLL) of a linear array is optimized using modified continuous genetic algorithms in this work. The amplitudes and phases of the currents as well as the separation of the antennas are all taken as variables to be controlled. The results of the design using modified GA versions are compared with other methods. Two design problems were studied using several contin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001